Finite form of the quintuple product identity
نویسندگان
چکیده
where the q-shifted factorial is defined by (x; q)0 = 1 and (x; q)n = (1− x)(1 − qx) · · · (1− q x) for n = 1, 2, · · · with the following abbreviated multiple parameter notation [α, β, · · · , γ; q]∞ = (α; q)∞(β; q)∞ · · · (γ; q)∞. This identity has several important applications in combinatorial analysis, number theory and special functions. For the historical note, we refer the reader to the paper [1]. In this short note, we shall show that identity (1) follows surprisingly from the following algebraic identity. Theorem (Finite form of the quintuple product identity). For a natural number m and a variable x, there holds an algebraic identity:
منابع مشابه
Two Finite Forms of Watson's Quintuple Product Identity and Matrix Inversion
Recently, Chen-Chu-Gu [4] and Guo-Zeng [6] found independently that Watson’s quintuple product identity follows surprisingly from two basic algebraic identities, called finite forms of Watson’s quintuple product identity. The present paper shows that both identities are equivalent to two special cases of the q-Chu-Vandermonde formula by using the (f, g)-inversion.
متن کاملShort Proofs of Summation and Transformation Formulas for Basic Hypergeometric Series
We show that several terminating summation and transformation formulas for basic hypergeometric series can be proved in a straigntforward way. Along the same line, new finite forms of Jacobi’s triple product identity and Watson’s quintuple product identity are also proved.
متن کاملA constructive theory of triple and quintuple product identities of the second degree
The groundwork for a theory of quadratic identities involving the classical triple and quintuple products is layed. The approach is through the study and use of affine maps that act on indexing lattices associated with the terms (double sums) in the given identity. The terms of the identity are found to be connected by the invariant of a ternary quadratic form.
متن کاملAnother simple proof of the quintuple product identity
The quintuple identity has a long history and, as Berndt [5] points out, it is difficult to assign priority to it. It seems that a proof of the identity was first published in H. A. Schwartz’s book in 1893 [19]. Watson gave a proof in 1929 in his work on the RogersRamanujan continued fractions [20]. Since then, various proofs have appeared. To name a few, Carlitz and Subbarao gave a simple proo...
متن کاملUnification of the Quintuple and Septuple Product Identities
By combining the functional equation method with Jacobi’s triple product identity, we establish a general equation with five free parameters on the modified Jacobi theta function, which can be considered as the common generalization of the quintuple, sextuple and septuple product identities. Several known theta function formulae and new identities are proved consequently.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 113 شماره
صفحات -
تاریخ انتشار 2006